Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators

نویسندگان

  • Marco Battiato
  • Irene Aguilera
  • Jaime Sánchez-Barriga
چکیده

Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin-orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized G W +Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron-electron and electron-phonon scatterings. Taking the prototypical insulator Bi 2 Te 3 as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron-electron and electron-phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3

Topological insulators (TIs) are a new quantum state of matter. Their surfaces and interfaces act as a topological boundary to generate massless Dirac fermions with spin-helical textures. Investigation of fermion dynamics near the Dirac point (DP) is crucial for the future development of spintronic devices incorporating topological insulators. However, research so far has been unsatisfactory be...

متن کامل

Spin-orbit coupling in quasiparticle studies of topological insulators

We present one-shot GW calculations of the bulk electronic structure of the topological insulators Bi2Se3 and Bi2Te3 within the all-electron full-potential linearized augmented-plane-wave formalism. We compare three different ways of treating the spin-orbit interaction in calculating the quasiparticle energies: (i) The spin-orbit coupling (SOC) is already incorporated in the noninteracting syst...

متن کامل

Group Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making

Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...

متن کامل

Tunable Dirac Fermion Dynamics in Topological Insulators

Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-h...

متن کامل

Strong renormalization of the electronic band gap due to lattice polarization in the GW formalism.

The self-consistent GW band gaps are known to be significantly overestimated. We show that this overestimation is, to a large extent, due to the neglect of the contribution of the lattice polarization to the screening of the electron-electron interaction. To solve this problem, we derive within the GW formalism a generalized plasmon-pole model that accounts for lattice polarization. The resulti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017